The commensal Prevotella heparinolytica skews dendritic cells towards a pro-Th17 phenotype and accelerates multiple myeloma progression

Arianna Brevi1,2*, Roberto Ferrarese3, Matteo Grioni1, Desiree Masciovecchio1,2, Virginia Amato1, Laura Cogrossi1,2, Nicasio Mancini2,3, Matteo Bellone1
*brevi.arianna@hsr.it
1 Cellular immunology Unit, San Raffaele Scientific Institute, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
2Vita-Salute San Raffaele University, Milan, Italy
3Laboratory of Microbiology, San Raffaele Scientific Institute, Milan, Italy

Keywords (maximum 8): Prevotella, Dendritic cell, Th17, Multiple myeloma.

Background The host microbiota impact immune responses beyond skin and mucosae. Here we investigated if the gut microbiota favors the induction of pro-tumoral Th17 responses in multiple myeloma, a treatable but incurable neoplasia of plasma cells mainly accumulating in the bone marrow.

Methods For gut colonization with selected commensal bacteria, mice were depleted of their microbiota by antibiotic treatment, and infected with Prevotella heparinolytica or P. melaninogenica by oral gavage. Immune infiltrates were analyzed by flow cytometry. Dendritic cells (DCs) were differentiated in vitro from bone marrow (BM) precursors or CD14+ peripheral blood mononuclear cells and stimulated with heat-killed bacteria. Splenocytes from C57BL/6 mice were stimulated with αCD3/αCD28 beads in the presence of Th17 polarizing cytokines or heat-killed bacteria.

Results Here we show that administration of P. heparinolytica but not P. melaninogenica to mice affected by multiple myeloma promoted the differentiation of Th17 cells colonizing the Peyer’s patches and migrating to the bone marrow, where they favored multiple myeloma aggressiveness. Disturbance of their microbiome or treatment with IL-17 blocking antibodies led to delayed disease appearance. Mechanistically, both heat-inactivated P. heparinolytica and P. melaninogenica induced murine and human DCs to maturation, but only P. heparinolytica prompted DCs to produce IL-1β, thus favoring Th17 differentiation.

Conclusions In mice affected by multiple myeloma, commensal bacteria, and P. heparinolytica in particular, unleash a signaling network between adaptive and innate immunity that accelerates MM, and can be targeted by already available therapies.